The Crystal Structure of Trigonal $\mathrm{U}_{3} \mathrm{O}_{8}$ *

By Stanley Siegel
Department of Chemistry, Argonne National Laboratory, Lemont, Illinois, U.S.A.

(Received 2 December 1954 and in revised form 25 April 1955)
The orthorhombic form of $\mathrm{U}_{3} \mathrm{O}_{8}$ is stable to about $400^{\circ} \mathrm{C}$. At this temperature, $\mathrm{U}_{3} \mathrm{O}_{8}$ transforms to a trigonal modification. The unit-cell dimensions are $a=6.801 \pm 0.001, c=4.128 \pm 0.001 \mathrm{kX}$. For one molecule in the cell the calculated density at the transition temperature is $8.41 \mathrm{~g} . \mathrm{cm} .^{-3}$. With the assumed oxygen positions, the space group becomes $P \overline{3}-C_{3 i}$. This leads to $\mathrm{U}_{\mathrm{I}}-6 \mathrm{O}_{\mathrm{I}}=$ $2.31 \AA, \mathrm{U}_{\mathrm{II}}-6 \mathrm{O}_{\mathrm{I}}=2.31 \AA$, and $\mathrm{U}_{\mathrm{II}}-2 \mathrm{O}_{\mathrm{II}}=2.06 \AA$.

Introduction

Investigations of the uranium-oxygen system in the composition range $\mathrm{UO}_{2.5}$ to $\mathrm{U}_{3} \mathrm{O}_{8}$ have led to the production of at least two polymorphic forms of $\mathrm{U}_{3} \mathrm{O}_{8}$ at elevated temperatures: one is an orthorhombic structure and the other an oxygen-deficient trigonal form. Only the latter phase will be reported here.
$\mathrm{U}_{3} \mathrm{O}_{8}$ will lose oxygen in a vacuum even at moderate temperatures. As it is convenient to perform the hightemperature studies with an evacuated capillary of $\mathrm{U}_{3} \mathrm{O}_{8}$, it is apparent that the sample will become more and more deficient in oxygen as the temperature is increased.

Experimental

The high-temperature X-ray camera is the model HC-101 unit manufactured by Central Research Laboratories and is capable of producing temperatures up to $1000^{\circ} \mathrm{C}$. The camera diameter is 114.6 mm ., and five separate diffraction patterns can be recorded on one film by means of a moving film carrier.

Diffraction patterns were obtained in $75^{\circ} \mathrm{C}$. intervals. Following each photograph, the sample was allowed to cool to room temperature before a new pattern, at a higher temperature, was obtained. Roomtemperature photographs, following such thermal cycling, indicated clearly that the composition corresponded to an oxygen:uranium ratio of less than $8 / 3$.

The sample was contained in a narrow thin-walled quartz capillary. Copper radiation, filtered with nickel foil, was used throughout the investigations.

Results

Upon heating $\mathrm{U}_{3} \mathrm{O}_{8}$ to $365^{\circ} \mathrm{C}$., the orthorhombic lattice was found to undergo somewhat rapid changes in size. The variations of the a, b and c axes with temperature are shown in Fig. 1. The temperature

[^0]coefficients of expansion and the dimensional changes arising from the loss of oxygen account for these curves. Between $445^{\circ} \mathrm{C}$. and $600^{\circ} \mathrm{C}$., the pattern

Fig. 1. The variation of $\alpha-\mathrm{U}_{3} \mathrm{O}_{8}$ and trigonal $\mathrm{U}_{3} \mathrm{O}_{8}$ cell dimensions with temperature.
undergoes some changes and a noticeable sharpening of the diffraction maxima can be observed at large angles. Furthermore, the cell size remains essentially constant over this temperature range.

The new pattern can be referred to a hexagonal cell, with the following cell constants:

$$
a=6.801 \pm 0.001, \quad c=4.128 \pm 0.001 \mathrm{kX}
$$

This leads to a calculated X-ray density of 8.41 g.cm..$^{-3}$ for one molecule in the cell.

The structure

The observed and calculated values for $\sin ^{2} \theta$ are given in Table 1. The calculated values include correc-

Table I. Diffraction data

$h k l$	$\left(\sin ^{2} \theta\right){ }_{0}$	$\left(\sin ^{2} \theta\right)_{c}$	I_{o}	I_{c}	$h k l$.	$\left(\sin ^{2} \theta\right){ }_{0}$	$\left(\sin ^{2} \theta\right){ }_{c}$	I_{0}	I_{c}
001	$0 \cdot 03531$	0.03531	164	164	520)	$0 \cdot 6681$	$0 \cdot 6688$?	31	251
110)	0.05206	$0 \cdot 05202$)	-958	266 \}	431 \}	$0 \cdot 6681$	0.6694 \}	31	~ 01
$101\}$	$0 \cdot 05206$	0.05256 f	258	~ 0 \}	413 ,	$0 \cdot 6792$	$0.6738)$	39	44)
111	$0 \cdot 08685$	0.08716	229	229	512 ${ }^{\text {a }}$	0.6722	0.6711 \}	39	$\sim 0 \mathrm{f}$
210	$0 \cdot 1207$	$0 \cdot 1212$	Weak	~ 0	$521 \alpha_{1}$	0.7021 ,	0.7014	51	54)
002	$0 \cdot 1403$	$0 \cdot 1404$	62	31	$521 \alpha_{2}$ J	$0 \cdot 7065$ \}	0.7047 f	26 \}	27 j
$\left.\begin{array}{l}211 \\ 102\end{array}\right\}$	0-15.58	$\left.\begin{array}{l}0 \cdot 1562 \\ 0 \cdot 1576\end{array}\right\}$	195	$\stackrel{\sim}{\sim} \sim 0$	$\left.\begin{array}{l}304 x_{1} \\ 304 x_{2}\end{array}\right\}$	$\left.\begin{array}{l} 0.7101 \\ 0.7132 \end{array}\right\}$	$\left.\begin{array}{l} 0.7090 \\ 0.7197 \end{array}\right\}$	$\left.\begin{array}{l}45 \\ 23\end{array}\right\}$	$\left.\begin{array}{l}24 \\ 12\end{array}\right\}$
300		0.1557	120	124 ,	$602 \alpha_{1} \alpha_{2}$				
$\left.\begin{array}{l} 301 \\ 112 \end{array}\right\}$	$0 \cdot 1915$	$\left.\begin{array}{l} 0 \cdot 1906 \\ 0 \cdot 1920 \end{array}\right\}$	214	$\left.\begin{array}{l} 162 \\ 126 \end{array}\right\}$	$\begin{aligned} & 294 x_{1} \alpha_{2} \\ & 333 \alpha_{1} \alpha_{2} \end{aligned}$	Not reso	in intens		
220	0.2072	$0 \cdot 2074$	56	65	$\left.522 \alpha_{1}\right\}$	$\left.\begin{array}{l}0.8048 \\ 0.8080\end{array}\right\}$	0.8046	64	$66)$
310	$0 \cdot 2246$	$0 \cdot 2245$	Weak	~ 0	$\left.522 \alpha_{2}\right\}$	0.8080	0.8085 \}	32	33)
221	$0 \cdot 2419$	$0 \cdot 2423$	90	101	$\left.\begin{array}{l}440 \alpha_{1} \\ 440 \alpha_{2}\end{array}\right\}$	$\left.\begin{array}{l} 0.8198 \\ 0.3235 \end{array}\right\}$	$\left.\begin{array}{l} 0.8195 \\ 0.8234 \end{array}\right\}$	51	12 6 \}
$\left.\begin{array}{l} 311 \\ 212 \end{array}\right\}$	$0 \cdot 2596$	$\left.\begin{array}{l} 0 \cdot 2593 \\ 0 \cdot 2608 \end{array}\right\}$	Weak	~ 0	$\left.\begin{array}{l} 700 x_{1} \\ 530 x_{1} \end{array}\right\}$	0.8357	$\left.\begin{array}{l}0.8365 \\ 0.8365\end{array}\right\}$	Faint	$\left.\begin{array}{r}\sim 0 \\ \sim 0\end{array}\right\}$
302	$0 \cdot 2954$	$0 \cdot 2950$	99	85	$700 \alpha_{2}$		0.8404)		~ 0
003	$0 \cdot 3150$	$0 \cdot 3147$	20	10	$\left.530 \alpha_{2}\right\}$	$0 \cdot 8396$	0.8413 \}	Faint	~ 0 f
320	0.3280	0.3273	Weak	~ 0	$441 \alpha_{1} \alpha_{2}$				
222	$0 \cdot 3463$	0.3464	71	68	$005 \alpha_{1} \alpha_{2}$	Not reso	in intens		
410 321	$0 \cdot 3613$	$\left.\begin{array}{l}0 \cdot 3615 \\ 0.3620 \\ 0.3636\end{array}\right\}$	58	56 \sim \sim	$\begin{aligned} & 612 \alpha_{1} \alpha_{2} \\ & 701 \alpha_{1} \alpha_{2} \end{aligned}$	Not reso	in intens		
312)	$0 \cdot 3613$	$0 \cdot 3636$)	ס8		$414 \alpha_{1}$	0.9121	0.9130	115	74
113	0.3664	$0 \cdot 3660$	63	50	$\left.414 \alpha_{2}\right\}$	0.9171	0.9178	156	38)
411	$0 \cdot 3960$	$0 \cdot 3959$	89	80	$\left.115 \alpha_{1}\right\}$	0.0171	$0 \cdot 9177$ \}	156	36 \}
$\left.\begin{array}{l}330 \\ 501\end{array}\right\}$	$0 \cdot 4641$	$\left.\begin{array}{l} 0 \cdot 4640 \\ 0 \cdot 4645 \end{array}\right\}$	29	$\left.\begin{array}{r}22 \\ \sim \\ \sim\end{array}\right\}$	$\left.\begin{array}{l}115 \\ 621 \\ \alpha_{1}\end{array}\right\}$	0.9214	$\left.\begin{array}{l}0.9299 \\ 0.9293\end{array}\right\}$	50	$\left.\begin{array}{r}18 \\ \sim 0\end{array}\right\}$
322		0.4660)			$621 \alpha_{2}$	-	-	0	~ 0
303	$0 \cdot 4690$	$0 \cdot 1688$	6-	29	$603 \alpha_{1} \sim_{2}$	Not reso	in intens		
331 \}	$0 \cdot 4993$	0.4986	105	35	$433 \alpha_{1} \alpha_{2}$				
412 \}	$0 \cdot 4993$	$0.5002\}$	10.	62 \}	$44: 2 x_{1}$	0.9564	0.9572	40	44
293	0.5202	$0 \cdot 5201$	37	34	$442 x_{2}$	0.9606	0.9595	20	22
004	$0 \cdot 5577$	$0 \cdot 5580$	11	5	$710 x_{1}$	0.9711	0.9711	108	57
$\left.\begin{array}{l}511 \\ 502\end{array}\right\}$	0.5667	$\left.\begin{array}{l} 0.5670 \\ 0.5687 \end{array}\right\}$	Weak	$\left.\begin{array}{r}\sim \\ \sim \\ \sim\end{array}\right\}$	$\left.\begin{array}{l}710 \alpha_{2} \\ 702 \alpha_{1} \\ 5822 \alpha^{\prime}\end{array}\right\}$	0.9759	$\left.\begin{array}{l}0.9764 \\ 0.9743 \\ 0.9743\end{array}\right\}$	158	$\left.\begin{array}{r}29 \\ \sim \\ \sim\end{array}\right\}$
33:	$0 \cdot 6018$	$0 \cdot 6026$	36	30	$532 \alpha_{1}$	0.9759	$\left.\begin{array}{l}0.9743 \\ 0.9768\end{array}\right\}$	158	~ 0
114	$0 \cdot 6089$	$0 \cdot 6094$	39	27	$523 \alpha_{1}$		0.9768		147
600	0.6177	0.6176	29	16	$\left.\begin{array}{l}702 \alpha_{2} \\ 532 \alpha_{2}\end{array}\right\}$	0.9804	$\left.\begin{array}{l}0.9788 \\ 0.9788\end{array}\right\}$	52	~ 00
601	$0 \cdot 6519$	$0 \cdot 6523$	30	29	$533 \lambda_{2}$ (0.9804		5	74

tions for the very heavy absorption within the sample.
The intensity distribution requires that the uranium atoms be located in the following positions:

$$
0,0,0 ; \frac{1}{3}, \frac{2}{3}, 0 ; \frac{2}{3}, \frac{1}{3}, 0 .
$$

This will account for the main intensity features of the diffraction pattern. However, some discrepancies appear between observed and calculated intensities, and furthermore, a number of very weak maxima occur which are not accounted for on the basis of the uranium scattering. Because of the very great differences in scattering powers between the uranium and oxygen atoms, no attempt was made to determine the oxygen positions directly from the data; rather, the oxygen positions were assumed to be derivable from suggested positions in the room-temperature form of $\mathrm{U}_{3} \mathrm{O}_{8}$ and the intensity contributions from the oxygen atoms were then compared with the data.

If the ratio a / b for orthorhombic $\mathrm{U}_{3} \mathrm{O}_{8}$ is plotted as a function of temperature, it is found that this ratio approaches the value $\left.\frac{1}{3}\right|^{\prime} 3$ near $365^{\circ} \mathrm{C}$. (the approximate transition temperature). This may indicate that the transformation from the orthorhombic to the hexagonal cell does not involve an abrupt change and suggests that the hexagonal cell may be derived from the orthorhombic form described by Zachariasen (1948, 1945). In fact, it is found that the cells are simply related, leading to the uranium positions cited above. Hence, if it is speculated that the oxygen atoms are related in a similar manner, the oxygen positions in the hexagonal cell become

$$
\pm\left(\frac{1}{3}, 0, z\right) ; \pm\left(\frac{1}{3}, \frac{1}{3}, \bar{z}\right) ; \pm\left(0, \frac{1}{3}, z\right) ; \pm\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}\right) .
$$

The effect of the oxygen positions on the line intensities was determined crudely by observing the ratio $I_{o} \mid I_{c}$ as a function of $\sin \theta$, with and without
oxygen atoms, in order to determine if the addition of the oxygen contributions was found to produce a smooth curve. For the $h k 0$ reflections, an improvement in the calculated intensities was indeed found. The oxygen contributions were always of the correct sign, although small. On the other hand, the z parameter could only be given an approximate value. The observed $00 l$ intensities were always considerably greater than the calculated values, indicating, possibly, the existence of preferred orientation of the crystallites. This may account for some of the uncertainty in evaluating z. However, the value $z=0 \cdot 1$ appears to be compatible with observations. The addition of the oxygen atoms with the coordinates given above produces a general improvement in the calculated intensities. The extent of the agreement is shown in Table 1, where the calculated intensities I_{c} include the oxygen contributions. The calculated intensities also contain heavy temperature and absorption corrections. The observed intensities I_{0} were taken from microphotometer tracings. At the large angles, the overlapping of the α_{1} and α_{2} maxima is generally so extensive that serious errors are introduced in the evaluation of the intensities and $\sin ^{2} \theta$ values. As
indicated in Table 1, a number of reflections could not be resolved in intensity.

Thus, with the assumption that the oxygen positions are assigned correctly, the space group becomes $P \overline{3}-C_{3 i}^{1}$, with atoms in the following positions:
$1 \mathrm{U}_{\mathrm{I}}$ in $(0,0,0)$;
$2 \mathrm{U}_{\mathrm{II}}$ in $\left(\frac{1}{3}, \frac{2}{3}, z_{1}\right),\left(\frac{2}{3}, \frac{1}{3}, \bar{z}_{1}\right)$, with $z_{1}=0$;
$6 \mathrm{O}_{\mathrm{I}}$ in $(x, y, z),(\bar{x}, \bar{y}, \bar{z}),(\bar{y}, x-y, z),(y, y-x, \bar{z})$, $(y-x, \bar{x}, z)$, and $(x-y, x, \bar{z})$ with $x=\frac{1}{3}, y=0$, and $z=0 \cdot 1$;
$2 \mathrm{O}_{\text {II }}$ in $\left(\frac{1}{3}, \frac{2}{3}, z_{2}\right),\left(\frac{2}{3}, \frac{1}{3}, \bar{z}_{2}\right)$ with $z_{2}=\frac{1}{2}$.
Each U_{I} is bonded to $6 O_{I}$ with $O_{I}-6 O_{I}=2.31 \AA$. Each U_{II} is bonded to $6 \mathrm{O}_{\mathrm{I}}$ with $\mathrm{U}_{\mathrm{II}}-6 \mathrm{O}_{\mathrm{I}}=2.31 \AA$ and in addition to $2 \mathrm{O}_{\mathrm{II}}$ with $\mathrm{U}_{\mathrm{II}}-2 \mathrm{O}_{\mathrm{II}}=2.06 \AA$. The latter bonding produces endless $\mathrm{U}_{\mathrm{II}}-\mathrm{O}_{\mathrm{II}}-\mathrm{U}_{\mathrm{II}^{-}}$ $\mathrm{O}_{\text {II }} \ldots$ chains along the c direction.

References

Hoerstra, H. R., Siegel, S., Fuchs, L. H. \& Katz, J. J. (1955). J. Phys. Chem. 59, 136.

Zachariasen, W. H. (1945). Manhatten Project Report, CK-2667.
Zachariasen, W. H. (1948). Acta Cryst. 1, 268.

Acta Cryst. (1955). 8, 619

A Method for Calculating Thermal Vibration Amplitudes from Spectroscopic Data

By P. W. Higas*
Department of Mathematical Physics, The University, Drummond Street, Edinburgh 8, Scotland

(Received 2 May 1955)

Abstract

It is shown how $\left(\overline{u_{i}^{2}}\right)$ int., the contribution from internal molecular vibrations to the mean square amplitude of thermal motion of an atom in a molecular crystal, may be calculated from the vibrational spectrum of the molecule itself and that of a molecule which differs from it only by the occurrence of a different isotope at position i.

In two previous papers (Higgs, 1953, 1955), which will be referred to as I, II respectively, the effect of thermal motion on the electron distribution in molecular crystals was discussed. The motion of an individual atom i was characterized by its mean square amplitude $\overline{u_{i}^{2}}$, a quantity identical apart from a numerical factor with the temperature parameter B_{i} commonly used by X-ray crystallographers (see II, equation (28)). It was stated in II that the calculation of $\left(\overline{u_{i}^{2}}\right)_{\text {int. }}$, the contribution to $\overline{u_{i}^{2}}$ from internal vibrations of a molecule, is hampered by the unreliability (so far) of purely

[^1]theoretical data on molecular force fields. In view of this fact it is perhaps worth while to point out that $\left(\overline{u_{i}^{2}}\right)_{\text {int. }}$ may be calculated from spectroscopic data. The quantities involved in the formula which is to be derived are the fundamental vibration frequencies of the molecule itself and those of molecules differing from it only by their isotopic composition. Thus the necessary data consist of certain infra-red and Raman spectra or of the vibrational structure of certain ultraviolet spectra.

First, using the notation of II, we write down some properties of normal coordinates. The vibrational kinetic and potential energies of a molecule,

$$
T=\frac{1}{2} \dot{\mathbf{y}}^{\prime} \mathbf{G}^{-1} \dot{\mathbf{y}} \quad \text { and } \quad V=\frac{1}{2} \mathbf{y}^{\prime} \mathbf{F} \mathbf{y}
$$

[^0]: * Chemical and crystallographic studies describing the region $\mathrm{UO}_{2 \cdot 5}$ to $\mathrm{U}_{3} \mathrm{O}_{8}$, upon which this work is based, are reported by Hoekstra, Siegel, Fuchs \& Katz (1955).

[^1]: * This work was done while the author was at the Wheatstone Physics Laboratory, King's College, Strand, London W. C. 2, England.

